The correct option is D 54
|4x2−16x+16|−7|x−2|=−3⇒4|x2−4x+4|−7|x−2|+3=0
⇒4|(x−2)2|−7|x−2|+3=0⇒4|(x−2)|2−7|x−2|+3=0(∵|x2|=|x|2)
Let |x−2|=t
⇒4t2−7t+3=0
⇒4t2−4t−3t+3=0
⇒(t−1)(4t−3)=0
⇒t=1 or t=34
⇒|x−2|=1 or |x−2|=34
⇒x−2=±1 or x−2=±34
⇒x=1,3 or x=54,114
∴x=1,54,114,3