We have,
4z=1+2i
z=1+2i4
Since,
z3+7z2−z+16 …….. (1)
On putting the value of z in equation (1), we get
=(1+2i4)3+7(1+2i4)2−(1+2i4)+16
=(1+8i3+6i(1+2i)64)+7(1+4i2+4i16)−(1+2i4)+16
=(1−8i+6i+12i264)+7(1−4+4i16)−(1+2i4)+16
=(1−2i−1264)+7(−3+4i16)−(1+2i4)+16
=(−11−2i64)+(−21+28i16)−(1+2i4)+16
=(−11−2i−84+112i−16−32i+102464)
=913+78i64
Hence, the value is 913+78i64.