If 5f(x)+3f(1x) = x+2 and y = xf(x), then (dydx)x=1 is equal to.
7/8
5f(x)+3f(1x) = x + 2
Replacing x by 1x
∴5f(1x)+3f(x) = 1x+2
From Eq. (i),
25f(x)+15f(1x) = 5x+10
and from Eq. (ii),
9f(x)+15f(1x) = 3x+6
Substracting Eq.(iv) from (iii), we get
∴16f(x) = 5x−3x+4
∴xf(x) = 5x2−3+4x16 = 4
∴dydx = 10x+416
dydx∣∣∣x=1 = 10+416 = 78