If (8a3+27b3)=0
then
(4a2+9b2)=
6ab
Using identity (x+y)3=x3+y3+3(xy)(x+y) we get
⇒(2a+3b)3=(8a3+27b3)+3(2a)(3b)(2a+3b)
⇒(2a+3b)3=0+18ab(2a+3b) Given: (8a3+27b3)=0
⇒(2a+3b)3−18ab(2a+3b)=0
⇒(2a+3b)((2a+3b)2−18ab)=0 Taking (2a+3b) common.
∴(2a+3b)2−18ab=0
⇒4a2+9b2+12ab−18ab=0
⇒4a2+9b2−6ab=0
⇒4a2+9b2=6ab