Given: ∣∣
∣∣x372x276x∣∣
∣∣=0,
⇒∣∣
∣∣x+9x+9x+92x276x∣∣
∣∣=0
[Applying R1→R1+R2+R3]
⇒(x+9)∣∣
∣∣1112x276x∣∣
∣∣=0,
[Taking (x+9) common from R1]
⇒(x+9)∣∣
∣∣0012−xx−2216−xx∣∣
∣∣=0
[Applying C1→C1−C2 and C2→C2−C3]
⇒(x+9)[1((2−x)(6−x)−1(x−2))]=0
[Expanding along R1]
⇒(x+9)[(2−x)(6−x)+(2−x)]=0
⇒(x+9)[(2−x)(6−x+1)]=0
⇒(x+9)[(x−2)(7−x)]=0
⇒x=−9,2,7
Given root is −9.
Hence, other two roots are 2 and 7.