If A={0,1} andB={1,2,3} show that AxB≠BxA
Solve for the required values and compare them.
Given,
A={0,1}
B={1,2,3}
⇒AxB={(0,1),(0,2),(0,3),(1,1),(1,2),(1,3)}⇒BxA={(1,0),(2,0),(3,0),(1,1),(2,1),(3,1)}
By the definition of equality of ordered pair,
The pair(0,1) inAxB is not equal to the pair(1,0) inBxA
So, AxB≠BxA
Hence proved.