1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Binomial Expression
If a0, a1, ...
Question
If
a
0
,
a
1
,
a
2
,
a
3
.
.
.
.
are the coefficient in order of the expansion of
(
1
+
x
+
x
2
)
n
, prove that
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
+
.
.
.
.
.
+
(
−
1
)
n
−
1
a
2
n
−
1
=
1
2
a
n
{
1
−
(
−
1
)
n
a
n
}
.
Open in App
Solution
(
1
+
x
+
x
2
)
n
=
a
0
+
a
1
x
+
a
2
x
2
+
.
.
.
+
a
n
x
n
+
.
.
.
+
a
3
x
2
n
−
3
+
a
2
x
2
n
−
2
+
a
1
x
2
n
−
1
+
a
0
x
2
n
a
n
comes once in the series.
Replace
x
by
−
x
,
(
1
−
x
+
x
2
)
n
=
a
0
−
a
1
x
+
a
2
x
2
+
.
.
.
+
(
−
1
)
n
a
n
x
n
+
.
.
.
−
a
3
x
2
n
−
3
+
a
2
x
2
n
−
2
−
a
1
x
2
n
−
1
+
a
0
x
2
n
Multiplying the both series and get the coefficient of
x
2
n
is ,
2
a
2
0
−
2
a
2
1
+
2
a
2
2
−
2
a
2
3
.
.
.
+
2
(
−
1
)
n
−
2
a
2
n
−
2
+
2
(
−
1
)
n
−
1
a
2
n
−
1
+
(
−
1
)
n
a
2
n
Coefficient of
x
2
n
in this
(
1
+
x
+
x
2
)
n
(
1
−
x
+
x
2
)
n
will be
a
n
a
n
=
2
a
2
0
−
2
a
2
1
+
2
a
2
2
−
2
a
2
3
.
.
.
+
2
(
−
1
)
n
−
2
a
2
n
−
2
+
2
(
−
1
)
n
−
1
a
2
n
−
1
+
(
−
1
)
n
a
n
a
n
=
2
(
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
.
.
.
+
(
−
1
)
n
−
2
a
2
n
−
2
+
(
−
1
)
n
−
1
a
2
n
−
1
)
+
(
−
1
)
n
a
2
n
a
n
−
(
−
1
)
n
a
2
n
=
2
(
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
.
.
.
+
(
−
1
)
n
−
2
a
2
n
−
2
+
(
−
1
)
n
−
1
a
2
n
−
1
)
a
n
2
(
1
−
(
−
1
)
n
a
n
)
=
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
.
.
.
+
(
−
1
)
n
−
2
a
2
n
−
2
+
(
−
1
)
n
−
1
a
2
n
−
1
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
.
.
.
+
(
−
1
)
n
−
2
a
2
n
−
2
+
(
−
1
)
n
−
1
a
2
n
−
1
=
a
n
2
(
1
−
(
−
1
)
n
a
n
)
Suggest Corrections
0
Similar questions
Q.
if
a
0
,
a
1
,
a
2
....be the coefficients in the expansion of (1 + x + x
2
)
n
in ascending powers of x , then prove that
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
+
.
.
.
.
.
.
+
(
−
1
)
n
−
1
a
2
n
−
1
=
1
2
a
n
(
1
−
(
−
1
)
n
a
n
)
Q.
If
a
0
,
a
1
,
a
2
,
.
.
.
.
.
.
be the coefficients in the expansion of
(
1
+
x
+
x
2
)
n
is ascending powers of
x
, then
a
2
0
−
a
2
1
+
a
2
2
−
a
2
3
+
.
.
.
.
.
.
+
a
2
2
a
=
a
n
.
Q.
If
a
0
,
a
1
,
a
2
,
.
.
.
.
.
be the coefficients in the expansion of
(
1
+
x
+
x
2
)
n
in ascending powers of x, then prove that :
(
a
0
+
a
3
+
a
6
+
.
.
.
)
=
(
a
1
+
a
4
+
a
7
+
.
.
.
.
)
=
=
(
a
2
+
a
5
+
a
8
+
.
.
.
)
=
3
n
−
1
Q.
If
a
0
,
a
1
,
a
2
,
.
.
.
.
be the coefficients in the expansion of
(
1
+
x
+
x
2
)
n
in ascending powers of
x
, then
a
0
a
1
−
a
1
a
2
+
a
2
a
3
−
.
.
.
.
=
Q.
Let
a
1
,
a
2
,
a
3
,
a
4
be real numbers such that and
a
2
1
+
a
2
2
+
a
2
3
+
a
2
4
=
1
. Then the smallest possible value of the expression
(
a
1
−
a
2
)
2
+
(
a
2
−
a
2
)
2
+
(
a
3
−
a
4
)
2
+
(
a
4
−
a
1
)
2
lies in interval .
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
What is Binomial Expansion?
MATHEMATICS
Watch in App
Explore more
Binomial Expression
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app