If A = {1, 2, 3}, B = {4} and C = {5}, then verify that :
(i) A×(B∪C)=(A×B)∪(A×C)
(ii) A×(B∩C)=(A×B)∩(A×C)
(iii) A×(B−C)=(A×B)−(A×C)
(i) We have,
A = {1, 2, 3}, B = {4} and C = {5}
∴B∪C={4}∪{5}={4,5}
∴A×(B∪C)={1,2,3}={4,5}
⇒A×(B∪C)
={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5) ....(i)
Now,
A×B={1,2,3}×{4}
={(1,4),(2,4),(3,4)}
and, A×C={1,2,3}×{5}
={(1,5),(2,5),(3,5)}
∴(A×B)∪(A×C)={(1,4),(2,4),(3,4)}∪{(1,5),(2,5),(3,5)}
⇒(A×B)∪(A×C)={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)} ...(i)
From equation (i) and (ii), we get
A×(B∪C)=(A×B)∪(A×C)
Hence verified.
(ii) We have,
A = {1, 2, 3}, B = {4} and C = {5}
∴B∩C={4}∩{5}=ϕ
∴A×(B∩C)={1,2,3}×ϕ
⇒A×(B∩C)=ϕ ...(i)
Now,
A×B={1,2,3}×{4}
={(1,4),(2,4),(3,4)}
and, A×C={1,2,3}×{5}
={(1,5),(2,5),(3,5)}
∴(A×B)∩(A×C)={(1,4),(2,4),(3,4)}∩{(1,5),(2,5),(3,5)}
⇒(A×B)∩(A×C)=ϕ ...(ii)
From equation (i) and equation (ii), we get
A×(B∩C)=(A×B)∩(A×C)
Hence verified.
(iii) We have,
A = {1, 2, 3}, B = {4} and C = {5}
∴B−C={4}
∴A×(B−C)={1,2,3}×{4}
⇒A×(B−C)={(1,4),(2,4),(3,4)} ...(i)
Now,
A×B={1,2,3}×{4}
=(1,4),(2,4),(3,4)
and A×C={1,2,3}×{5}
={(1,5),(2,5),(3,5)}
∴(A×B)−(A×C)={(1,4),(2,4),(3,4)} .....(ii)
From equation (i) and equation (ii), we get
A×(B−C)=(A×B)−(A×C)
Hence verified.