If a1+2a2+3a3=1, where a1,a2&a3 are all positive numbers; then what is the minimum value of 2a1+4a2+8a3?
3*41/3
AM=(2a1+4a2+8a3)3 and GM =(2a1×4a2×8a3)(13)
Using condition AM≥GM, we get (2a1+4a2+8a3)3≥(2a1×4a2×8a3)(13)
2a1+4a2+8a3≥3(2a1×22a2×23a3)(13)
≥3(2a1+2a2+3a3)(13)
But a1+2a2+3a3=1
Answer =(27×2)13