1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Dividing Terms with the Same Exponent
If a1/3+ b1...
Question
If
a
1
/
3
+
b
1
/
3
+
c
1
/
3
=
0
,then show that
(
a
+
b
+
c
)
3
=
27
a
b
c
Open in App
Solution
a
1
3
+
a
b
3
+
c
1
3
=
0
⇒
a
1
3
+
a
b
3
=
−
c
1
3
....
(
1
)
Cubing both sides, we get
⇒
(
a
1
3
+
a
b
3
)
3
=
(
−
c
1
3
)
3
⇒
a
+
b
+
3
a
1
3
b
1
3
(
a
1
3
+
a
b
3
)
=
−
c
⇒
a
+
b
+
c
=
−
3
a
1
3
b
1
3
(
−
c
1
3
)
from
(
1
)
⇒
a
+
b
+
c
=
3
a
1
3
b
1
3
c
1
3
Cubing both sides, we get
⇒
(
a
+
b
+
c
)
3
=
(
3
a
1
3
b
1
3
c
1
3
)
3
∴
(
a
+
b
+
c
)
3
=
27
a
b
c
Hence proved.
Suggest Corrections
5
Similar questions
Q.
If
a
1
3
+
b
1
3
+
c
1
3
=
0
then
(
a
+
b
+
c
)
=
27
a
b
c
. Prove
x
by using appropriate formula .
Q.
If
a
1
3
+
b
1
3
+
c
1
3
=
0
then
(
a
+
b
+
c
)
3
=
27
a
b
c
how?
Q.
If
a
1
/
3
+
b
1
/
3
+
c
1
/
3
=
0
, then the value of
(
a
+
b
+
c
)
3
will be:
Q.
If a
1
/3
+ b
1
/3
+ c
1
/3
= 0, then
(a) a + b + c = 0
(b) (a + b + c)
3
=27abc
(c) a + b + c = 3abc
(d) a
3
+ b
3
+ c
3
= 0