The correct option is A 19804
Given, an+1=an+4n and a1=4
⇒an+1−an=4n
Put n=1,a2−a1=4⋅1
Put n=2,a3−a2=4⋅2
Put n=3,a4−a3=4⋅3
_____ ______ _________
_____ ______ _________
Put n=99,a100−a99=4⋅99
On adding, we get
a100−a1=4(1+2+.....+99)
⇒a100−4=499(99+1)2[∵∑n=n(n+1)2]
Therefore, a100=19804