If a1,a2,a3,....,an be an AP of non-zero terms. Prove that
1a1a2+1a2a3+....+1an−1an=
n−1a1an
Let d be the common difference of the given AP, then
a2−a1=a3−a2=...=an−an−1=d
LHS = 1a1a2+1a2a3+1a3a4+...+1an−1 an
=1d(da1a2+da2a3+da3a4+...+dan−1 an)
=1d(a2−a1a1a2+a3−a2a2a3+a4−a3a3a4+....+an−an−1an−1−1an)
= 1d(1a1−1a2+1a3−1a3−1a4+...+1an−1−1an)
= 1d(1a1−1an)
= 1d(an−a1a1an)=1d[a1+(n−1)d−a1a1an]=n−1a1an