Let α1,α2,α3,.....,αn are the roots of the given equation.
Then ∑α1=α1+α2+α3+.....+αn=−a1
∑α1α2=α1α2+α2α3+.....+αn−1αn=−a2Now(n−1)a21−2na2=(n−1)(∑α1)2−2n∑α1α2=n{(∑α1)2−2∑α1α2}−(∑α1)2=n∑α21−(∑α1)2=∑∑(αiαj)21≤i<j≤n
But given that (n−1)a21−2na2<0
∑∑(αiαj)2<01≤i<j≤n
which is true only when at least two roots are imaginary.
Ans: 1