The correct option is D none of these
Given that, a1,a2,...,an are in H.P.
⇒1a1,1a2,...,1an are in A.P.
⇒a1+a2+...+ana1,a1+a2+...+ana2,...,a1+a2+...+anan are in A.P.
⇒a1+a2+...+ana1−1,a1+a2+...+ana2−1,...,a1+a2+...+anan−1 are in A.P.
⇒a2+a3+...+ana1,a1+a3+...+ana2,...,a1+a2+...+an−1an are in A.P.
⇒f1a1,f2a2,...,fnan are in A.P.
⇒α1,α2,...,αn are in H.P.
Therefore, 2α1,2α2,2α3,2α4,.... are not in A.P, H.P or G.P
Ans: D