If a1>a2>a3, b1>b2>b3 and aibj≠1 for 1≤i, j≤3, then the determinant Δ=∣∣
∣
∣
∣
∣
∣∣1−a31b311−a1b11−a31b321−a1b21−a31b331−a1b31−a32b311−a2b11−a32b321−a2b21−a32b331−a2b31−a33b311−a1b11−a33b321−a3b21−a33b331−a3b3∣∣
∣
∣
∣
∣
∣∣ is
A
positive
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
non-negative
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
negative
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
non-positive
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A positive ∣∣
∣
∣
∣
∣
∣∣1−a31b311−a1b11−a31b321−a1b21−a31b331−a1b31−a32b311−a2b11−a32b321−a2b21−a32b331−a2b31−a33b311−a1b11−a33b321−a3b21−a33b331−a3b3∣∣
∣
∣
∣
∣
∣∣ =∣∣
∣
∣∣1+a1b1+a21b211+a1b2+a21b221+a1b3+a21b231+a2b1+a22b211+a2b2+a22b221+a2b3+a22b231+a3b1+a23b211+a3b2+a23b221+a3b3+a23b23∣∣
∣
∣∣ =∣∣
∣
∣∣1a1a211a2a221a3a23∣∣
∣
∣∣×∣∣
∣
∣∣1b1b211b2b221b3b23∣∣
∣
∣∣ =(a1−a2)(a2−a3)(a3−a1)(b1−b2)(b2−b3)(b3−b1) This is always positive.