If a1, a2, a3, ⋯, an be an AP of nonzero terms then prove that
1a1a2+1a2a3+1a3a4+⋯+1an−1an=(n−1)a1an
Let d be the common difference of the given AP. Then,
(a2−a1)=(a3−a2)=(a4−a3)=⋯=(an−an−1)=d
∴ 1a1a2+1a2a3+1a3a4+⋯+1an−1an
=1d.{da1a2+1a2a3+1a3a4+⋯+dan−1an}
=1d.{(a2−a1)a1a2+(a3−a2)a2a3+(a4−a3)a3a4+⋯+(an−an−1)an−1an}
[∵ (a2−a1)=(a3−a2)=⋯=(an−an−1)=d]
=1d.{(1a1−1a2)+(1a2−1a3)+(1a3−1a4)+⋯+(1an−1−1an)}
=1d.(1a1−1an)=1d.(an−a1)a1an
=1d.[{a1+(n−1)d}−a1a1an] [∵ an=a1+(n−1)d]
=1d.(n−1)da1an=(n−1)a1an
Hence, the result follows.