wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a1,a2,....an1 are nth roots of unity then prove that
(i) (1a1)(1a2)(1an1)...=n
(ii) 1+a1+a2+....+an1=0
(iii) 12a1+12a2+....12an1=(n2)2n1+12n1

Open in App
Solution

a1,a2,a3,.an1nth roots of unity.

(i) (xn)=(xa1)(xa2)..(xan1)(x1)

xn1x1=(xa1)(xan1)

1+x+x2+.+xn1=(xa1)(xa2)..(xan1)

Put x=a

(1a1)(1a2)..(1an1)=1+.=n

(ii) xn1=0

Sum of roots =0

1+a1+a2+.an1=0

(iii) xn1x1=(xa1)..(xan1)

Taking log,

log(nn1)log(x1)

=log(xa1)+log(xa2)+.+log(xan1)

Differentiation w.r.t: x

nxn1xn11x1

=1xa1+1xa2++1xan1

Put x=2

n2n12n11=12a1+12a2+..+12an1

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon