a1,a2,a3,….an−1→nth roots of unity.
(i) (xn−)=(x−a1)(x−a2)…..(x−an−1)(x−1)
⇒ xn−1x−1=(x−a1)……(x−an−1)
⇒1+x+x2+….+xn−1=(x−a1)(x−a2)…..(x−an−1)
Put x=a
(1−a1)(1−a2)…..(1−an−1)=1+…….=n
(ii) xn−1=0
Sum of roots =0
⇒1+a1+a2+….an−1=0
(iii) xn−1x−1=(x−a1)…..(x−an−1)
Taking log,
log(nn−1)−log(x−1)
=log(x−a1)+log(x−a2)+….+log(x−an−1)
Differentiation w.r.t: x
nxn−1xn−1−1x−1
=1x−a1+1x−a2+…+1x−an−1
Put x=2
n⋅2n−12n−1−1=12−a1+12−a2+…..+12−an−1
Hence proved.