The correct option is
D (n−1)a1anSince a1,a2,.....an are in HP
1a1,1a2,1a3......1an are in AP.
Let d is the common difference of the AP
1a2−1a1=d
a1−a2=a1a2d
Similarly a2−a3=a2a3d
........................................................
..................................................
an−1−an=an−1and
On adding all these we will get
a1−an=d(a1a2+a2a3+............+an−1an)
Also
1an=1a1+(n−1)d
d=a1−ana1an(n−1)
On putting the value from the above equation we get
a1−an=a1−ana1an(n−1)(a1a2+a2a3+....+an−1an)
(a1a2+a2a3+....+an−1an)=a1an(n−1)
So, option D is the correct answer.