The correct option is C cannot be determined
a=1+i2+i4+⋯+i2n⇒a=1−1+1−1+⋯+(−1)n
So, there are two values of a depending on n.
When n is odd, a=0
When n is even, a=1
Now, b=cos−1(∣∣∣11+i∣∣∣)=cos−1(∣∣∣1−i2∣∣∣)
⇒b=cos−11√2=π4
When a=0, tan(ba) cannot be determined.
When a=1, tan(ba)=1
Hence, the value of tan(ba) cannot be determined.