If |a|=10,|b|=2anda.b=12, then |a×b| is equal to?
12
14
16
18
Explanation for the correct option:
Step1. Finding value of sinθ&cosθ
Given, |a|=10,|b|=2anda.b=12,
Weknowthat,a.b=|a||b|cosθCosθ=(a.b)(|a|.|b|)Cosθ=12(10x2)Cosθ=35
Then,
Sinθ=(1-cos2θ)12Sinθ=1-35212Sinθ=45
Step 2. Finding value of vector product.
|⇒|axb|=|a||b|sinθ⇒|axb|=10×2×45∴|axb|=16
Hence, correct option is (C)