If A(2,2,−3),B(5,6,9),C(2,7,9) be the vertices of a triangle. The internal bisector of the angle A meets BC at the point D, then find the coordinates of D.
We have,
Point
A(x1,y1,z1)=(2,2,−3)
B(x2,y2,z2)=(5,6,9)
C(x3,y3,z3)=(2,7,9)
Let the coordinates of point D(x,y,z).
So,
According to question,
AB=√(5−2)2+(6−2)2+(9−3)2
AB=√9+16+149=√132=13
AC=√(2−2)2+(7−2)2+(9+3)2
AC=√0+25+144=√169=13
Thus ABC is isosceles triangle with AB=AC
So, angle bisector AD bisects BC
D≡(5+22,6+72,9+92)≡(72,132,9)
Hence, this is the ansewr.