If a2+b2=23ab, show that :
log a+b5=12(log a+log b)
a2+b2 = 23ab
a2+b2+2ab = 23ab+2ab
(a+b)2 = 25ab
Taking log on both sides;
log(a+b)225 = logab
log(a+b5)2 = logab 2 log(a+b5) = loga + logb log(a+b5) = 12(loga + logb)
If log a−b2=12(log a+log b), show that: a2+b2=6ab