If a2+b2 - ab - a - b + 1 ≤ 0, a, b ϵ R and f(x)=(1+sec2x)(1+sec22x) ___ (1+sec2nx), then the value of f(π2n−1) where n ϵ N, is
If |→A × →B| = √3→A.→B, then the value of |→A+→B| is
If ab+bc+ca=0, then the value of 1a2−bc+1b2−ca+1c2−ab will be: A.−1 B.a+b+c C.abc D.0