Given, a2+b2+c2=1
We know that, (a+b+c)2≥0
⇒a2+b2+c2+2(ab+bc+ca)≥0
⇒1+2(ab+bc+ca)≥0
⇒ab+bc+ca≥−12
Again, (b−c)2+(c−a)2+(a−b)2≥0
⇒2(a2+b2+c2)−2(ab+bc+ca)≥0
⇒ab+bc+ca≤a2+b2+c2
⇒ab+bc+ca≤1
Hence, −12≤ab+bc+ca≤1