If a2+b2+c2=1, then ab + bc + ca lies in :
We have (a+b+c)2≥0
⇒ (a2+b2+c2)+2(ab+bc+ca)≥0
⇒ ab + bc + ca ≥ - 12 ...... (1)
Also a2+b2+c2−(ab+bc+ca)
= 12[(a−b)2+(b−c)2+(c−a)2]≥0
⇒ 1 - ( ab + bc +ca ) ≥ 0
⇒ ab +bc + ca ≥ 0 .....(2)
Combining (1) and (2) , we ger
−12≤ab+bc+ca≤1 .
i.e., ab + bc + ca lies in [−12,1]