Let Δ=∣∣
∣
∣∣a2+(b2+c2)cosϕab(1−cosϕ)ac(1−cosϕ)ba(1−cosϕ)b2+(c2+a2)cosϕbc(1−cosϕ)ca(1−cosϕ)cb(1−cosϕ)c2+(a2+b2)cosϕ∣∣
∣
∣∣
Multiplying C1 by a, C2 by b and C3 by c we get
Δ=1abc∣∣
∣
∣∣a3+a(b2+c2)cosϕab2(1−cosϕ)ac2(1−cosϕ)ba2(1−cosϕ)b3+b(c2+a2)cosϕbc2(1−cosϕ)ca2(1−cosϕ)cb2(1−cosϕ)c3+c(a2+b2)cosϕ∣∣
∣
∣∣
Taking a common from R1, b from R2 and c from R3, we get
Δ=abcabc∣∣
∣
∣∣a2+(b2+c2)cosϕb2(1−cosϕ)c2(1−cosϕ)a2(1−cosϕ)b2+(c2+a2)cosϕc2(1−cosϕ)a2(1−cosϕ)b2(1−cosϕ)c2+(a2+b2)cosϕ∣∣
∣
∣∣
Applying C1→C1+C2+C3
Δ=∣∣
∣
∣∣1b2(1−cosϕ)c2(1−cosϕ)1b2+(c2+a2)cosϕc2(1−cosϕ)1b2(1−cosϕ)c2+(a2+b2)cosϕ∣∣
∣
∣∣
As a2+b2+c2=1
Applying R2→R2−R1,R3→R3−R1
Δ=∣∣
∣
∣∣1b2(1−cosϕ)c2(1−cosϕ)0(b2+c2+a2)cosϕ010(c2+a2+b2)cosϕ∣∣
∣
∣∣
Expanding along C1
We get Δ=cos2ϕ