wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a2+b2+c2=1 then is the value of the determinant ∣ ∣ ∣a2+(b2+c2)cosθba(1cosθ)ca(1cosθ)ab(1cosθ)b2(c2+a2)cosθcb(1cosθ)ac(1cosθ)bc(1cosθ)c2+(a2+b2)cosθ∣ ∣ ∣ independent of a,b,c?
If yes enter 1 else enter 0.

Open in App
Solution

Let Δ=∣ ∣ ∣a2+(b2+c2)cosϕab(1cosϕ)ac(1cosϕ)ba(1cosϕ)b2+(c2+a2)cosϕbc(1cosϕ)ca(1cosϕ)cb(1cosϕ)c2+(a2+b2)cosϕ∣ ∣ ∣
Multiplying C1 by a, C2 by b and C3 by c we get
Δ=1abc∣ ∣ ∣a3+a(b2+c2)cosϕab2(1cosϕ)ac2(1cosϕ)ba2(1cosϕ)b3+b(c2+a2)cosϕbc2(1cosϕ)ca2(1cosϕ)cb2(1cosϕ)c3+c(a2+b2)cosϕ∣ ∣ ∣
Taking a common from R1, b from R2 and c from R3, we get
Δ=abcabc∣ ∣ ∣a2+(b2+c2)cosϕb2(1cosϕ)c2(1cosϕ)a2(1cosϕ)b2+(c2+a2)cosϕc2(1cosϕ)a2(1cosϕ)b2(1cosϕ)c2+(a2+b2)cosϕ∣ ∣ ∣
Applying C1C1+C2+C3
Δ=∣ ∣ ∣1b2(1cosϕ)c2(1cosϕ)1b2+(c2+a2)cosϕc2(1cosϕ)1b2(1cosϕ)c2+(a2+b2)cosϕ∣ ∣ ∣
As a2+b2+c2=1
Applying R2R2R1,R3R3R1
Δ=∣ ∣ ∣1b2(1cosϕ)c2(1cosϕ)0(b2+c2+a2)cosϕ010(c2+a2+b2)cosϕ∣ ∣ ∣
Expanding along C1
We get Δ=cos2ϕ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Addition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon