If a2+b2+c2=1, x2+y2+z2=1 where a, b, c, x, y, z are real, prove that ax+by+cz≤1
Open in App
Solution
Applying A.M≥G.M inequality,we have a2+x2≥2ax b2+y2≥2by c2+z2≥2cz Adding, a2+b2+c2+x2+y2+z2≥2(9x+by+cz).Using the given conditions,it reduces to 2≥2(ax+by+cz)⇒ax+by+cz≤1