If a2+b2+c2=−2 and f(x)=∣∣
∣
∣
∣
∣∣1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x∣∣
∣
∣
∣
∣∣. Then, f(x) is a polynomial of degree
∣∣ ∣ ∣∣1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x∣∣ ∣ ∣∣
=∣∣ ∣ ∣∣1+2x+(a2+b2+c2)x(1+b2)x(1+c2)x1+2x+(a2+b2+c2)x1=b2x(1+c2)x1+2x+(a2+b2+c2)x(1+b2)x1+c2x∣∣ ∣ ∣∣[C1→C1+C2+C3]
=∣∣ ∣ ∣∣1(1+b2)x(1+c2)x11+b2x(1+c2)x1(1+b2)x1+c2x∣∣ ∣ ∣∣[∵a2+b2+c2=−2]
=∣∣ ∣ ∣∣1(1+b2)x(1+c2)x01−x0001−x∣∣ ∣ ∣∣[R2→R2–R1;R3→R3−R1]
=(1−x)2
∴f(x) is a polynomial of degree 2.