If A2−B2=x2−14 and AB=x2. Find the value of A6+B6.
A2−B2=x2−14.....(1)
2AB=x.....(2)
We know, A2+B2=√(A2−B2)2+4A2B2
=√(x2−14)2+x2
=√x4+116+x22=√(x2+14)2
A2+B2=x2+14.....(3)
Adding equation 1 and equation 3
2A2=2x2
A=±x substitute the value of A in equation 1.
We get,
B=±12
A6+B6=(±x)6+(±12)6
=x6+164= 64x6+164