If a2+1a2=11; find a−1a
(a−1a)2=a2+1a2−2⇒(a−1a)2=11−2⇒(a−1a)2=9⇒a−1a=√9⇒a−1a=3.
If a2+1a2=23; find a+1a
If tan−11a−1=tan−11x+tan−11a2−x+1, then x is