wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=(2xcotx)x then dAdx=


A

2xx[log2cotxcosec2x(cotx)2x]

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

2xx[log2cotx+cosec2x(cotx)2x]

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2xx[log2cotxcosec2x(cotx)]

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

2xx[log2cotxcosec2x(cotx)2x]


Finding the value of dAdx:

Given, A=(2xcotx)x

Differentiate with respect to x

dAdx=xddx(2xcotx)(2xcotx)ddx(x)x2 ddx(uv)=uv'-vu'v2

=xddx2xcotx+2xddxcotx-(2xcotx)12xx ddx(uv)=uv'+vu

=x(2xlog2cotx2xcosec2x)-(2xcotx)12xx=(2xx)[log2cotxcosec2x(cotx)2x]

Hence, option (A) is the correct option.


flag
Suggest Corrections
thumbs-up
11
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon