The correct option is B 45
Using the formula,
an=a+(n−1)d
So, a3=a+(3−1)d
a=a+2d ......... (1)
a7=a+(7−1)d
21=a+6d ........ (2)
Subtracting equation (1) & (2)
a=a+2d ........ (1)
21=a=bd ....... (2)
(-) (-) (-)
------------------
−20=−4d
d=5
Put the value of d in equation (1)
a=a+2(5)
a=−1
The sum of first n term is given by Sn=n2[2a+(n−1)d]
S5=52[2(−1)+(5−1)5]
=52(−2+20)
=2.5(18)
S5=45