wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a3∣ ∣ ∣1bcb2b3+1b2cc2bc2c3+1∣ ∣ ∣+a2∣ ∣ ∣1a200bb3+1bc2cb2cc3+1∣ ∣ ∣=18,
where a,b,c0, then the values of (a,b,c) satisfying the given equation is/are

A
(1,2,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2,1,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(2,1,1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(1,1,2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A (1,2,2)
B (2,1,2)
a3∣ ∣ ∣1bcb2b3+1b2cc2bc2c3+1∣ ∣ ∣+a2∣ ∣ ∣1a200bb3+1bc2cb2cc3+1∣ ∣ ∣=18
Multiplying a2 in R1 and a in C1 to first determinant and RC in second determinant then multiply a2 in R1
∣ ∣ ∣a3a2ba2cab2b3+1b2cac2bc2c3+1∣ ∣ ∣+∣ ∣ ∣1a2ba2c0b3+1b2c0bc2c3+1∣ ∣ ∣=18∣ ∣ ∣a3+1a2ba2cab2b3+1b2cac2bc2c3+1∣ ∣ ∣=18R1aR1, R2bR2, R3cR3∣ ∣ ∣a4+aa3ba3cab3b4+bb3cac3bc3c4+c∣ ∣ ∣=18abcabc∣ ∣ ∣a3+1a3a3b3b3+1b3c3c3c3+1∣ ∣ ∣=18abcR1R1+R2+R3(1+a3+b3+c3)∣ ∣ ∣111b3b3+1b3c3c3c3+1∣ ∣ ∣=18C2C2C1, C3C3C1(1+a3+b3+c3)∣ ∣ ∣100b310c301∣ ∣ ∣=181+a3+b3+c3=18a3+b3+c3=17(a,b,c)=(1,2,2),(2,1,2),(2,2,1)



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon