If a and b are the roots x2−3x+p=0 and c, d are roots of x2−12x+q=0, where a, b, c, d form a G.P. Prove that (q+p):(q−p)=17:15.
a, b, c, d are in A.P.
Let ba=cb=dc=k
∴ba=k⇒b=ak
cb=k⇒c=bk=(ak)k=ak2
dc=k⇒d=ck=(ak2)k=ak3
Since, a and b are roots of x2−3x+p=0
∴(a+b)=−(−3)1 and ab=p1
⇒a+ak=3 and a, ak = p [∵b=ak]
⇒a(1+k)=3……(1)
and a2k=p……(2)
Also, c and d are the roots of x2−12x+q=0
∴c+d=−(−12)1 and d=21
⇒ak2+ak3=12 and ak2.ak3=q
∵c=ak2 and d=ak3
⇒ak2(1+k)=12……(3)
and a62k5=q……(4)
Dividing (3) by (1),
ak2(1+k)a(1+k)=123
⇒k2=4 or k=±2
Now, q+pq−p=a2k5+a2ka2k5−a2k=a2k(k4+1)a2k(k4−1)
=(k4+1)(k4−1)=(±2)4+1(±2)4−1
=16+116−1=1715
Thus, (q+p):(q−p)=17:15