If A+B=225o, then cotA1+cotA.cotB1+cotB=
Let us consider the problem:
cot(A+B)=cotAcotB−1cotA+cotB
Hence,
A=225∘−B simplify the above equation,
cotA+cotB+1=cotAcotB-------------(i)
Implies that
P=cotAcotB(1+cotA)(1+cotB)=cotAcotB1+cotA+cotB+cotAcotB=cotAcotB2cotAcotB=12
Implies that
P=cotAcotB(1+cotA)(1+cotB)=cosAcosBsin(A+B)+cos(A−B)
Now,puting the values,A=225∘−B
Implies that
P=cos225∘cos2B+sin225∘sinBcosBsin225∘+cos225∘cos2B+sin225∘sin2B
Therefore,
Using,cos225∘=sin225∘
Implies that
P=cosB(cosB+sinB)1+cos2B+sin2B
Implies that
cos2B+1=2cos2B
Hence,
sin2B=2sinBcosB
P=12