If A+B=5 and AB=6. Find A3+B3.
125
90
35
215
Using the identity, (x+y)3=x3+y3+3x2y+3xy2) =x3+y3+3xy(x+y)
This can be rewritten as (x3+y3)=(x+y)3−3xy(x+y)
Substituting in A and B for x and y, we get:
(A3+B3)=(A+B)3−3AB(A+B) =53−3×6×5=125−90=35
If a−b=3 and a3 - b3 =117 ,then ab = _________
What is (a3−b3) if ab=6 and (a+b)=5 and a>b?