If a:b = 7 : 3, find (2a + 3b) : (6a + 7b)
21:63
23:63
23:61
23:65
Let a = 7k and b = 3k, where k is the constant of proportionality.
(2a + 3b) : (6a + 7b) = (2(7k)+3(3k)) : (6(7k)+7(3k))
= 14k + 9k : 42k + 21k
= 23k : 63k
= 23 : 63
Hence the ratio is 23 : 63
If a : b = 3 : 8, find the value of 4a+3b6a−b
Frame the quadrilateral whose solution set is {–1/2, 3/4}
if a : b = 5:3, find 5a + 8b : 6a – 7b.