If A, B and C be the sets such that A∪B=A∪C and A∩B=A∩C then prove that B= C
Let A∪B=A∪C and A∩B=A∩C be given Then.
A∪B=A∪C
⇒(A∪B)∩B=(A∪C)∩B and (A∪B)∩C=(A∪C)∩C
⇒B=(A∩B])∪(C∩B) and (A∩C)∪(B∩C)=C
[∵ B⊆(A∪B) and C⊆(A∪C)]
⇒B=(A∩B)∪(B∩C) and (A∩B)∪(B∩C)=C[∵A∩C=A∩B]
⇒B=C
Hence, B=C