The correct option is B 2(a+b)3,2(b−c)3,2c+2d3
Given that (a+b),(b−c) and (c+d) are in A.P
∴ 2(b – c) = a + b + c + d …..(i)
Now, consider:
c+da+a+b2a=2c+2d+a+b2a
=a+b+c+d+c+d2a
=2(b−c)+c+d2a
=2b−2c+c+d2a
=2b+d−c2a
=2(b−c)2a
Thus, a+b2a,b−c2a,c+da(a≠0) are not in A.P
Consider
2c+2d3+2(a+b)3=2c+2d+2a+2b3
=2(a+b+c+d)3
=2[2(b−c)]3
=4(b−c)3=2×2(b−c)3
Thus, 2(a+b)3,2(b−c)3,2c+2d3 are in A.P
Consider,
(c+d)+(a−b)=a−b+c+d
≠2(b+c)
a+ba−b+c+dc−d=(a+b)(c−d)+(a−b)(c+d)(a−b)(c−d)
=ac−ad+bc−bd+ac+ad−bc−bdac−ad−bc+bd
=2ac−2bdac−ad−bc+bd
=2(ac−bd)ac−ad−bc+bd
≠2(b−cb+c)
Thus, a+ba−b,b−cb+c,c+dc−d are not in A.P