The correct option is C 12
Given a+b+c=0 and a2+b2+c2=1
a+b+c=0
Squaring on both sides,
a2+b2+c2+2(ab+bc+ca)=0
⇒ab+bc+ca=−12
Squaring on both sides,
a2b2+b2c2+c2a2+2abc(a+b+c)=14
⇒a2b2+b2c2+c2a2=14
Now, a4+b4+c4=(a2+b2+c2)2−2(a2b2+b2c2+c2a2)
∴a4+b4+c4=1−2(14)=12
Hence, option C.