wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a + b + c = 0 and ∣ ∣axcbcbxabacx∣ ∣=0 then show that x = 0, x=32(a2+b2+c2)

Open in App
Solution

∣ ∣axcbcbxabacx∣ ∣=C1=C1+C2+C3∣ ∣a+b+cxcba+b+cxbxaa+b+cxacx∣ ∣
=x∣ ∣1cb1bxa1acx∣ ∣ ()a+b+c=0
=x{(bx)(cx)a2c[(cx)a]+b[ab+x]}
=x{bc+x2x(b+c)a2c2+cx+ac+abb2+bx}
=+x{a2+b2+c2(ab+bc+cax2)}
Now (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0(a+b+c.a)
2(ab+bc+ca)=(a2+b2+c2)
Ar ab+bc+ca(a2+b2+c2)2
Δ=x{a2+b2+c2+a2+b2+c22x2]=0
=x{32(a2+b2+c2)x2}=0
x=0 or x=32(a2+b2+c2)


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon