∣∣
∣∣a−xcbcb−xabac−x∣∣
∣∣=C1=C1+C2+C3∣∣
∣∣a+b+c−xcba+b+c−xb−xaa+b+c−xac−x∣∣
∣∣
=−x∣∣
∣∣1cb1b−xa1ac−x∣∣
∣∣ (∵)a+b+c=0
=−x{(b−x)(c−x)−a2−c[(c−x)−a]+b[a−b+x]}
=−x{bc+x2−x(b+c)−a2−c2+cx+ac+ab−b2+bx}
=+x{a2+b2+c2−(ab+bc+ca−x2)}
Now (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0(∵a+b+c.a)
2(ab+bc+ca)=−(a2+b2+c2)
Ar ab+bc+ca(a2+b2+c2)2
Δ=x{a2+b2+c2+a2+b2+c22−x2]=0
=x{32(a2+b2+c2)−x2}=0
⇒x=0 or x=√32(a2+b2+c2)