If a+b+c=0 then prove
a4+b4+c4=2(a2b2+b2c2+c2a2)
Given: If a+b+c=0
We know that (x+y+z)2=x2+y2+z2+2xy+2yz+2zx
then (a+b+c)2=0 [squaring both sides]
a2+b2+c2+2(ab+bc+ca)=0
a2+b2+c2=−2ab−2bc−2ca
On squaring on both sides, we get
L.H.S =(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2c2a2
R.H.S =(−2ab−2bc−2ca)2=4a2b2+4b2c2+4c2a2+8ab2c+8bc2a+8ca2b
∴a4+b4+c4+(2a2b2+2b2c2+2c2a2)=(4a2b2+4b2c2+4c2a2)+8ab2c+8bc2a+8ca2b
⇒a4+b4+c4=(4a2b2+4b2c2+4c2a2)−(2a2b2+2b2c2+2c2a2)+8ab2c+8bc2a+8ca2b
⇒a4+b4+c4=(2a2b2+2b2c2+2c2a2)+8ab2c+8bc2a+8ca2b
⇒a4+b4+c4=(2a2b2+2b2c2+2c2a2)+8abc(b+c+a)
⇒a4+b4+c4=(2a2b2+2b2c2+2c2a2)+8abc(a+b+c)
⇒a4+b4+c4=(2a2b2+2b2c2+2c2a2)+8abc×0 [∵(a+b+c)=0]
⇒a4+b4+c4=2(a2b2+b2c2+c2a2) [proved]