If a + b + c = 0
Then prove that
a5 + b5 + c5 a³ + b3 + c3 a2 + b2 + c2
------------------- = ---------------------- × --------------------------
5 3 2
a+b+c=0 ; Squaring
(a+b+c)^2=0
a^2+b^2+c^2=−2(ab+bc+ca)……………(1)
(a+b)^3=a^3+b^3+3ab(a+b) but a+b=−ca+b=−c
−c^3=a^3+b^3−3abc or a^3+b^3+c^3=3abc…..(2)
Now (a^3+b^3+c^3(a^2+b^2+c^2)=a^5+b^5+c^5+a^3b^2+a^3c^2+b^3a^2+b^3c^2+c^3a^2+c^3b^2
=a^5+b^5+c^5+a^2b^2(a+b)+b^2c^2(b+c)+c^2a^2(c+a)
=a^5+b^5+c^5−a^2b^2c−b^2c^2a−c^2a^2b
=a^5+b^5+c^5−abc(ab+bc+ca)
So a^5+b^5+c^5=(a^3+b^3+c^3)(a^2+b^2+c^2)+abc(ab+bc+ca)
=(a^3+b^3+c^3)(a^2+b^2+c^2)+(a^3+b^3+c^3)/3*(a^2+b^2+c^2)/−2
=5/6(a^3+b^3+c^3)(a^2+b^2+c^2)
(a^5+b^5+c^5)/5=(a^3+b^3+c^3)/3*(a^2+b^2+c^2)/2