If a+b+c=0, then prove that a3+b3+c3=3abc.
Prove the statement .
Given: a+b+c=0
Thus, a+b=-c…………………… 1
Cubing both sides :
⇒ a+b3=-c3
⇒a3+b3+3ab(a+b)=-c3
⇒ a3+b3+c3=-3ab(a+b)
From equation 1:
⇒ a3+b3+c3=3abc (a+b=-c)
Hence proved that a3+b3+c3=3abc .
If a+b+c=0 then (a3+b3+c3) is (a) 0 (b) abc (c) 2abc (d) 3abc