The correct option is D −24 abc
a+b+c=0
Now, (a+b−c)3=(a+b+c–c−c)3
=(0–2c)3=−8c3
(b+c−a)3=(b+c+a–a−a)3
=(0–2a)3=−8a3
(c+a−b)3=(c+a+b–b−b)3
=(0–2b)3=−8b3
∴(a+b−c)3+(b+c−a)3+(c+a−b)3
=(−8c3)+(−8a3)+(−8b3)
=−8(a3+b3+c3)=−8(3abc)=−24abc....... using :[a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2–ab–bc−ca)]
[If a+b+c=0 then a3+b3+c3=3abc]