If a+b+c=0, then Xa2b−1c−1⋅Xa−1b2c−1⋅Xa−1b−1c2 is equal to
Option B. is correct.
Given: a+b+c=0
Then according to the identity, if a+b+c=0 then a3+b3+c3=3abc
Let z=Xa2b−1c−1⋅Xa−1b2c−1⋅Xa−1b−1c2
Then using identity, an⋅am=an+m, we get,
z=Xa2b−1c−1⋅Xa−1b2c−1⋅Xa−1b−1c2
=Xa2bc+b2ac+c2ab
=Xa3+b3+c3abc
Since, a+b+c=0, using the mentioned identity, we get,
=X3abcabc
=X3
Hence, Xa2b−1c−1⋅Xa−1b2c−1⋅Xa−1b−1c2=X3