if a:b:c=1:m:n, where a,b,c are real numbers, and the expressions x2+2(a+b+c)x+3(bc+ca+ab) is a perfect square, then the value of m+n is
The given expression is a perfect square
⇒Discriminant=0
⇒(2(a+b+c))2−4(3)(abc+ca+ab)=0
⇒(a+b+c))2−3bc−3ca−3ab=0
⇒a2+b2+c2+2ab+2bc+2ca−3bc−3ca−3ab
⇒a2+b2+c2−ab−ca−bc=0
⇒12[(a−b)2+(b−c)2+(c−a)2]=0
This is possible only when a=b=c
∴a:b:c=1:1:1
=1:m:n(given)
or m=1, n=1 ⇒ m+n=2