If A+B+C=180o, then cos2A+cos2B−cos2C=
A+B+C=π
A+B=π−C
⇒cos(A+B)=cos(π−c)
⇒cosAcosB−sinAsinB=−cosC
⇒(cosAcosB)=(sinAsinB−cosC)
squaring lroth sides
⇒(cosAcosB)2=(sinAsinB−cosθ)2
⇒cos2Acos2B=sin2Asin2B+cos2C−2(cosC)(sinAsinB)
⇒(1−sin2A)(1−sin2B)=sin2A⋅sin2B+cos2C
−2(cosC)(sinA⋅sinB)
⇒1−sin2A−sin2B+sin2A⋅sin2B=sin2A⋅sin2B+cos2C
−2(cosC)(sinA⋅sinB)
⇒1+2sinA⋅sinB⋅cosC=sin2A+sin2B+cos2C
⇒1+2sinA⋅sinB⋅cosC=1−cos2A+1−cos2B+cos2C
⇒2sinAsinB⋅cosC−1=−cos2A−cos2B+cos2C
⇒1−2sinA⋅sinB⋅cosC=Cos2A+cos2B−cos2C
: Answer: option (A)