If A + B + C = 2 S, then sin (S - A) sin (S - B) + sin S. sin (S - C) =
Sin A sin B
sin (S - A) sin (S - B) + sin S. sin (S - C)
We can use formula 2 sin A sin B = cos (A - B) - cos (A + B)
So, multiply and divide given expression by 2
12 [2sin (S -A) sin(S-B) + 2 sin S.sin (S - C)]
= 12 [cos (S - A - S + B) - cos (S - A + S - B) + cos (S - S + C) - cos (S + S - C)]
= 12 [cos (-A + B) - cos (2S - A - B) + cosC - cos (2S - C)]
= 12 [cos (-A + B) - cos (A + B + C - A - B) + cosC - cos (A + B + C - C)]
= 12 [cos (-A + B) - cos C + cosC - cos (A + B)]
= 12 [cos (-A + B) - cos (A + B)]
cos C - cos D = 2 sin (C+D)2 . sin (D−C)2
= 12 [2sin(−A+B+A+B2).sin(A+B−(−A+B)2)]
= sin (2B2) . sin (2A2)
= sin A . sin B