If a + b + c +ab +bc + ca + abc = 2005 where a, b, c are distinct natural number such that a < b < c then
We have,
If a+b+c+ab+bc+ca+abc=2005
We know that,
(a+1)(b+1)(c+1)=a+b+c+ab+bc+ca+abc+1
⇒(a+1)(b+1)(c+1)=2005+1
⇒(a+1)(b+1)(c+1)=2006
⇒(a+1)(b+1)(c+1)=2×17×59
⇒(a+1)(b+1)(c+1)=(1+1)(16+1)(58+1)
On comparing that,
a=1,b=16,c=58
Then,
a+b+c=1+16+58
a+b+c=75
Hence, this is the answer.